Clinical vestibular testing assessed with machine-learning algorithms.
نویسندگان
چکیده
IMPORTANCE Dizziness and imbalance are common clinical problems, and accurate diagnosis depends on determining whether damage is localized to the peripheral vestibular system. Vestibular testing guides this determination, but the accuracy of the different tests is not known. OBJECTIVE To determine how well each element of the vestibular test battery segregates patients with normal peripheral vestibular function from those with unilateral reductions in vestibular function. DESIGN, SETTING, AND PARTICIPANTS Retrospective analysis of vestibular test batteries in 8080 patients. Clinical medical records were reviewed for a subset of individuals with the reviewers blinded to the vestibular test data. INTERVENTIONS A group of machine-learning classifiers were trained using vestibular test data from persons who were "manually" labeled as having normal vestibular function or unilateral vestibular damage based on a review of their medical records. The optimal trained classifier was then used to categorize patients whose diagnoses were unknown, allowing us to determine the information content of each element of the vestibular test battery. MAIN OUTCOMES AND MEASURES The information provided by each element of the vestibular test battery to segregate individuals with normal vestibular function from those with unilateral vestibular damage. RESULTS The time constant calculated from the rotational test ranked first in information content, and measures that were related physiologically to the rotational time constant were 10 of the top 12 highest-ranked variables. The caloric canal paresis ranked eighth, and the other elements of the test battery provided minimal additional information. The sensitivity of the rotational time constant was 77.2%, and the sensitivity of the caloric canal paresis was 59.6%; the specificity of the rotational time constant was 89.0%, and the specificity of the caloric canal paresis was 64.9%. The diagnostic accuracy of the vestibular test battery increased from 72.4% to 93.4% when the data were analyzed with the optimal machine-learning classifier. CONCLUSIONS AND RELEVANCE Rotational testing should be considered the primary test to diagnose unilateral peripheral vestibular damage in patients with dizziness or imbalance. Most physicians, however, continue to rely on caloric tests to guide their diagnoses. Our results support a significant shift in the approach used to determine diagnoses in patients with vestibular symptoms.
منابع مشابه
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملPrediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JAMA otolaryngology-- head & neck surgery
دوره 141 4 شماره
صفحات -
تاریخ انتشار 2015